The City of Bowling Green Water Treatment Plant has prepared the following report to provide information to you, the consumer, on the quality of our drinking water. Included in this report is general health information, water quality test results, how to participate in decisions concerning your drinking water, and water system contacts. The City of Bowling Green will notify you immediately if there is any reason for concern about the water.

The City of Bowling Green draws surface water from the Maumee River during periods when the river supply is of high water quality. The water is then stored in the City's 170 million gallon above-ground reservoir to be used at times when the river water quality is less desirable. The reservoir storage provides a means to supply consistently high quality water to the consumer. The water plant's operators work around the clock, 7 days a week to assure the quality of your drinking water meets or exceeds all Federal and State requirements. Your drinking water goes through a continuously monitored, 10-step multi-barrier treatment process, which takes several hours to complete.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk.

The source of drinking water and bottled water includes rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive materials, and can pick up substances from the presence of animals or human activity.

Contaminants that may be present in source water include:

A). Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plans, septic systems, agricultural livestock operations and wildlife.

B). Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

C). Pesticides and herbicides, which may come from a variety of sources, such as agriculture, urban storm water runoff and residential uses.

D). Organic chemicals contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

E). Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health. It's important to remember that the presence of certain contaminants does not necessarily indicate that the water poses a health risk.

Nitrates in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.
The following table shows the results of our water-quality analysis. Every regulated contaminant that we detected in the water, even in the most minuscule traces, is listed here. The table contains the name of each substance, the highest level allowed by regulation (MCL), the ideal goals for public health (MCLG), the amount detected, the usual source of such contaminants, and, if applicable, a key to the units of measurement. This table does not show the numerous other contaminants we tested for, and did not detect in our water:

2015 Water Quality Data

<table>
<thead>
<tr>
<th>Microbiological Contaminants</th>
<th>Violation Y/N</th>
<th>Sample Year</th>
<th>MCL</th>
<th>Detected Level</th>
<th>Range of Detections</th>
<th>MCLG</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity (NTU)</td>
<td>No</td>
<td>2015</td>
<td>TT = 0.3</td>
<td>0.16</td>
<td>.05 - .016</td>
<td>NA</td>
<td>Soil Runoff</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total Inorganic Contaminants</th>
<th>Violation Y/N</th>
<th>Sample Year</th>
<th>MCL</th>
<th>Detected Level</th>
<th>Range of Detections</th>
<th>MCLG</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>No</td>
<td>2015</td>
<td>TT = 2.5</td>
<td>2.50</td>
<td>2.5-2.9</td>
<td>NA</td>
<td>Naturally Present in the Environment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inorganic Contaminants</th>
<th>Violation Y/N</th>
<th>Sample Year</th>
<th>MCL</th>
<th>Detected Level</th>
<th>Range of Detections</th>
<th>MCLG</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium (ppm)</td>
<td>No</td>
<td>2015</td>
<td>Al = 1.3</td>
<td>0.122</td>
<td>NA</td>
<td>1.3</td>
<td>Water additive which promotes strong leach; Erosion of Natural Deposits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nutrients (ppm as Nitrogen)</th>
<th>Violation Y/N</th>
<th>Sample Year</th>
<th>MCL</th>
<th>Detected Level</th>
<th>Range of Detections</th>
<th>MCLG</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrate</td>
<td>No</td>
<td>2015</td>
<td>Al = 15</td>
<td>< 4</td>
<td>NA</td>
<td>0</td>
<td>Corrosion of household plumbing systems</td>
</tr>
</tbody>
</table>

Volatile Organic Contaminants

<table>
<thead>
<tr>
<th>Total Trihalomethanes (THM)</th>
<th>Violation Y/N</th>
<th>Sample Year</th>
<th>MCL</th>
<th>Detected Level</th>
<th>Range of Detections</th>
<th>MCLG</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromodichloromethane (ppb)</td>
<td>No</td>
<td>2015</td>
<td>NR = 5.7</td>
<td>5.7</td>
<td>NA</td>
<td>0</td>
<td>By-product of drinking water chlorination</td>
</tr>
</tbody>
</table>

Regional Disinfectants

<table>
<thead>
<tr>
<th>Total Chlorine (ppm)</th>
<th>Violation Y/N</th>
<th>Sample Year</th>
<th>MCL</th>
<th>Detected Level</th>
<th>Range of Detections</th>
<th>MCLG</th>
<th>Likely Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRDL</td>
<td>No</td>
<td>2015</td>
<td>NR = 1.4</td>
<td>1.4</td>
<td>NA</td>
<td>1.4</td>
<td>Water additive used to control microbes</td>
</tr>
</tbody>
</table>

Definitions

Action Level - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

IDDE - Initial Distribution System Evaluation is a one-time study conducted by water systems to identify distribution system locations with greater concentrations of trihalomethanes (THMs) and haloacetic acids (HAA5)

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The “Goal” (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLG’s allow for a margin of safety.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of drinking water disinfectant below which there is no known or expected risk to health. MRDLG’s do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Maximum Residual Disinfectant Level (MRDL) - The level of drinking water disinfectant below which there is no known or expected risk to health. MRDL’s do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Treatment Technique (TT) - A treatment technique is a required process intended to reduce the level of a contaminant in drinking water.

Unregulated Contaminant Monitoring Rule (UCMR) - An EPA program to collect data for contaminants that do not have health based standards set under the safe drinking water act.

Key to Table

<table>
<thead>
<tr>
<th>AL</th>
<th>MCL</th>
<th>MCLG</th>
<th>MRDL or MRDLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Action Level</td>
<td>Maximum Contaminant Level</td>
<td>Maximum Residual Disinfectant Level</td>
<td>Maximum Residual Disinfectant Level Goal</td>
</tr>
</tbody>
</table>

Additional Notes

The **< Symbol** - A symbol which means less than. A result of <5 means that the lowest level that could be detected was 5 and that the contaminant in that sample was not detected.

Turbidity is a measure of the cloudiness of the water and is an indication of the effectiveness of our filtration system. The turbidity limit set by the EPA is 0.3 NTU in 95% of the daily samples and shall not exceed 1 NTU at any time. As reported above, Bowling Green's highest recorded turbidity result for 2015 was 0.16 and 100% of our samples met the turbidity limits.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. At risk individuals should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microorganisms.

Bowling Green's drinking water contains small amounts of naturally-occurring minerals such as calcium and magnesium. Fluoride is added to protect teeth as required by law.

The values reported in the table under “Detected Level” for Total Organic Carbon (TOC) is the lowest ratio between percentage of TOC actually removed to the percentage of TOC required to be removed. A value greater than one indicates that the water system is in compliance with TOC removal requirements. A value of less than one indicates a violation of TOC removal requirements.

The City of Bowling Green encourages public interest and participation in our community's decisions affecting drinking water. Board of Public Utilities meetings are held regularly at 5:00 p.m. the second and fourth Monday of each month at the City Administrative Services Building located at 304 North Church Street in the City Council Chambers. The public is welcome to attend these meetings to ask questions or express concerns as a lobby visitation if desired. Find out more about the City of Bowling Green on the Internet at http://www.bgohio.org/departments/utilities-department/water-treatment-plant.